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ABSTRACT

A number of idealized life-cycle simulations of baroclinically unstable waves are systematically analyzed to
study the effects of eddy momentum flux and of zonal mean horizontal shear on the finite-amplitude evolution
of the waves. Twenty-level quasigeostrophic and primitive equation models with channel geometry are numerically
integrated with the most unstable linear normal mode as an initial condition. The flows are inviscid except for
weak second-order horizontal diffusion.

It is found that the finite-amplitude baroclinic waves are sensitively influenced by the vertically integrated
eddy momentum flux of the normal mode via the large barotropic shear it spins up in the mean flow. This
“barotropic governor” mechanism prevents the eddy from attaining all the available potential energy stored in
the domain, leading to irreversible barotropic decay. Only in the purely baroclinic, fplane, quasigeostrophic
problem, where the vertically integrated eddy momentum flux identically vanishes due to symmetry, is the
growth of baroclinic waves unaffected by the barotropic governor and bounded solely by the total available
potential energy. Barotropic shear in the basic flow, the earth’s spherical geometry, and nonquasigeostrophic
motion all introduce spatial asymmetry into the normal mode, whose nonlinear evolution therefore rapidly
departs from the purely baroclinic solution. The details of the departure depend sensitively on the shape of the
initial asymmetry, however.

The results suggest the natural tendency of baroclinic waves toward barotropic decay in nearly inviscid
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atmospheres.

1. Introduction

Linear stability analyses (James 1987; Nakamura
1993) show that barotropic shear in the mean flow
hinders the optimal growth of baroclinic disturbances
by reducing their meridional coherence, the effect often
being referred to as the “barotropic governor.” The
shear also gives rise to eddy momentum flux in the
normal mode that tends to be countergradient (Stone
1969; Mclntyre 1970; Held and Andrews 1983; James
1987; Nakamura 1993): that is, in the sense of rein-
forcing the shear in the region of energy conversion.
As a result of this positive feedback, the barotropic
shear in the zonal wind, even if initially weak, can in-
crease rapidly during the finite-amplitude evolution of
baroclinic disturbances (Nakamura 1993). The en-
hanced shear, in turn, would drastically modify the
nature of baroclinic disturbances toward the equilibra-
tion and decay stages of the life cycle.

The operation of this self-induced, nornlinear baro-
tropic governor during the life cycle of baroclinic waves
is our primary concern in this paper. The main issue
to be addressed is twofold. First, the initiation mech-
anism: How is the eddy momentum flux, the key in-
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gredient in the nonlinear barotropic governor, pro-
duced in the linear, growing baroclinic normal modes?
Asymptotic analyses based on Eady-type models by
Mclntyre (1970) and by Nakamura (1993) show that
a weak horizontal shear in the basic flow gives rise to
a countergradient eddy momentum flux in baroclinic
instability. The uniform potential vorticity in the in-
terior of these models, however, excludes the effects of
the earth’s spherical geometry. Also neglected is the
contribution from the higher-order ageostrophic mo-
tion. While calculations using the primitive equations
on the sphere (e.g., Simmons and Hoskins 1976) en-
compass all these factors, it is desirable to assess the
separate impact of each factor on the formation of eddy
momentum flux.

The second issue is the equilibration mechanism.
Once the positive feedback between the eddy momen-
tum flux and barotropic shear is established, how does
it affect the amplitude saturation of baroclinic waves
and the profiles of equilibrated flows? To what extent
can we predict the nonlinear behavior in terms of the
characteristics of the basic state and of the linear normal
modes? Despite a number of articles on life-cycle sim-
ulations of unstable baroclinic waves in the literature
(e.g., Gall 1976; Simmons and Hoskins 1978; Gu-
towski et al. 1989; Polavarapu and Peltier 1990; Barnes
and Young 1992), assessments of the effectiveness of
the barotropic governor vary considerably.
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In this paper, we shall analyze a number of life-cycle
simulations of normal-mode baroclinic waves in sim-
plified contexts, contrasting the cases where the baro-
tropic governor plays no role from the cases where its
effects are significant. Factors that control the direction
of eddy momentum flux for the linear normal modes
are examined in detail. These factors include the shape
of the barotropic wind profile, the effects of beta and
the earth’s sphericity, and nonquasigeostrophic effects.
We shall see that these processes contribute to pro-
ducing vertically integrated eddy momentum flux by
providing asymmetries in the governing equations.

In the next section, the quasigeostrophic equations
are used to highlight some important theoretical back-
ground, particularly the mean flow modification and
the spatial symmetries of the system, frequently cited
throughout the text. In section 3 the effects of basic-
state barotropic shear on the nonlinear barotropic gov-
ernor are examined in flows with uniform potential
vorticity. In the subsequent sections, we assess contri-
butions from other factors in isolation: the beta and
sphericity effects are discussed in section 4, while the
nonquasigeostrophic aspects are addressed in section
5 utilizing a primitive equation model. The overall im-
portance of eddy momentum flux for the nonlinear
dynamics of unstable baroclinic waves is discussed in
the concluding section. '

2. The quasigeostrophic model

In most of this paper, a multilevel, quasigeostrophic
model in a Cartesian channel will be used. It is only
in section 5 that the primitive equations are used in-
stead to examine the effects of nonquasigeostrophic
motion. We assume that the fluid is incompressible
and that the static stability of the basic state is uniform.
The periodic channel is bounded by rigid planes at y
= +L/2 and at z = £H/2. The domain is discretized
by uniform rectangular grids, with 40, 101, and 21
points in x, ¥, and z, respectively. The Arakawa C grid
is used in the horizontal, while a Charney-Phillips grid
is used in the vertical differencing. The zonal mean
flow and eddy parts are predicted by separate equations.
For the eddy, the potential vorticity and potential tem-
perature equations are integrated with respect to time
in the interior and on the horizontal boundaries, re-
spectively. The streamfunction is then obtained by in-
verting potential vorticity at each time step, subject to
Neumann boundary conditions in z and Dirichlet
conditions in y. For the zonal mean flow, the merid-
ional gradients are predicted for the potential vorticity
in the interior and for the potential temperature on
the boundaries. The mean zonal wind is then inverted
from the potential vorticity gradients with similar
boundary conditions to those for eddy streamfunction.
In the full model, weak second-order horizontal dif-
fusion terms with a constant diffusion coefficient
(4 X 10* m?>s™") are added to the eddy prognostic
equations to suppress gridpoint noise.
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Since we are primarily concerned with the wave-
mean flow interaction, we first note the transformed
Eulerian-mean (TEM) equation for the zonal mo-
mentum:

- uole = folvi]* + [vog], (2.1)
where
[UOQ] - [‘#y‘/’x]y + Nz [‘l’x‘//z]za (2-23)
0
. Jo
[v]* =[vi] - N2 [¥ad:].. (2.2b)
0

In the above, g and y are the quasigeostrophic potential
vorticity and the geostrophic streamfunction, respec-
tively, and brackets denote zonal averaging over the
channel length. Notation is standard unless otherwise
stated (e.g., Andrews et al. 1987).

By vertically integrating (2.1) one obtains

(Mol )e = {[¥w¥x])y = —(luool )y, (2.3)

where angle brackets denote vertical averaging over
—H/2 < z< H/2. Thus, the tendency of the barotropic
component of the zonal mean wind is controlled by
the convergence of the vertically integrated geostrophic
momentum flux. Meanwhile, vertically integrating
(2.2a),

_ /3
<[¢y¢x]>y - <[¢XQ]> - N(Z)H

X ([¢x¢2]2=1-l/2 - [\bx‘tbz]z=-—f{/2)~

Hence, potential vorticity flux in the interior as well
as the difference between the heat fluxes at the two
boundaries determine the convergence of vertically in-
tegrated momentum flux, and, by virtue of (2.3), the
tendency of the barotropic component of the flow.

Certain information on the structure of the distur-
bance is obtained a priori if one takes advantage of
symmetry properties in the governing equations. This
can be used not only to check the consistency of the
numerical solutions, but also to constrain the dynamics
in some useful ways, as demonstrated in the subsequent
sections. The linear normal modes of the quasigeo-
strophic equations in a channel geometry, for example,
bear the following symmetry properties:

(2.4)

Theorem 1. If the zonal wind U and the meridi-
onal potential vorticity gradient Q, of the basic
state are both symmetric about y = 0, the pertur-
bation streamfunction of a linear normal mode
¥’ is either symmetric or antisymmetric about the
same latitude. That is,

Vi(x,y,z,t) ==Y (x, —y,z,1) if U,z
= U(_ya Z) and Q_y(y: Z)=Q_y(—ys Z)'
This is easy to see if one realizes that the linearized
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potential vorticity equation and the boundary condi-
tions are invariant under the translation (y, ¢') = (—y,
+yJ’) given the basic-state symmetry. It immediately
leads to the following corollary:

Corollary 1. The meridional fluxes of potential
vorticity and heat associated with the above linear
normal modes are meridionally symmetric about
y = 0, while the momentum flux is antisymmetric.

Therefore, for meridionally symmetric basic flows, the
eddy momentum flux of the normal modes identically
vanishes at y = 0. The nonlinear extension of the above
is that:

Theorem 2. If the flow is sinuous (varicose) at
one time, it remains sinuous (varicose) for all
time,

where the flow is said to be sinuous when Y(x, y, z, t)
= —yY(x £ 7, —y, z, t) and varicose when Y(x, ¥, z,
t) = —y¥(x, —y, z, t). Here, we have assumed 27 pe-
riodicity in x, and y is the total streamfunction mea-
sured relative to a reference value at y = 0 at each
height. Theorem 2 is a consequence of the invariance
of the governing equations under the translation (x,
Y, ¥) = (x + a, —y, —¢), where « is an arbitrary
phase constant. Note that symmetric and antisym-
metric linear modes superposed on a symmetric basic
flow project onto sinuous and varicose flows, respec-
tively. It is readily shown that the sinuous and varicose
flows are symmetric about y = 0 when zonally aver-
aged, thus the meridional symmetry in the zonal mean
flow is also preserved. Likewise, the symmetry prop-
erties of the zonally averaged fluxes carry over from
the linear modes: the potential vorticity and heat fluxes
remain symmetric about y = 0 if they are symmetric
at any time, whereas the momentum flux remains an-
tisymmetric.

Analogously, a useful theorem pertaining to the ver-
tical symmetry of unstable baroclinic modes under the
assumption of incompressibility and constant static
stability ' reads:

Theorem 3. 1f U(y, z) = —U(y, —z) and Q,(»,
z) = —Q,(y, —z), and if vertical boundary con-
ditions are symmetric (rigid planes at z = +H/2
with no topography or surface friction), the eddy
heat flux for an unstable linear normal mode is
vertically symmetric while the eddy momentum
and potential vorticity fluxes are vertically anti-
symmetric.

The nonlinear extension of theorem 3 is:

Theorem 4. 1f the zonal mean flow and potential
vorticity gradient are vertically antisymmetric at

! Theorem 3 is also valid for vertically symmetric profiles of static
stability.
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one time, they remain antisymmetric for all time.
The vertical symmetries in the fluxes are also pre-
served.

A proof of theorems 3 and 4 is found in appendix A.
An important consequence of these theorems is that
baroclinic instability growing in a vertically antisym-
metric zonal flow on an fplane with constant static
stability and density will never spin up a barotropic
component in the zonal mean flow. Thus, it can be
used as an illuminating example in which the effects
of the barotropic governor play no role in the dynamics
of baroclinic instability.

3. Effects of barotropic shear in the basic flow

In this section, life-cycle simulations of baroclinic
waves are examined for basic flow profiles with varying
barotropic components, to test the sensitivity of the
solution to the barotropic shear included in the basic
state. We consider a zonally uniform basic flow on an
fplane, similar to the one used by Hoskins and West
(1979):

- A
Uy, z) =3 {(2 —h)
Hsinh[a(z — /)]
2 sinh(aH/2)
a=2nNo/(fobL), —L[2<y<L/2,
—H/2 < z< H/2.

cos(Zwy/L)} + Ay,

(3.1)

The bracket represents a meridionally symmetric
baroclinic jet. The constant A is a measure of its vertical
shear. When 4 = 0, the jet is also vertically antisym-
metric and thus the barotropic component vanishes.
The constant 4 in the second term represents an in-
dependent, constant barotropic shear. This term is
added to give a nonvanishing horizontal shear at the
jet axis. The potential temperature gradient of the basic
state is balanced by the vertical shear through the ther-
mal wind relation, and is independent of / or A. The
quasigeostrophic potential vorticity of the basic flow
(3.1) is uniform and thus has no meridional gradient:
Q0 _ - fb-
Ez—Uyy—F%Uzz=O. (3.2)

a. Purely baroclinic problem (h = A = 0)

First, we analyze the dynamics of the normal-mode
instability for the symmetric jet with # = 4 = 0. The
jet is meridionally symmetric about the center of the
channel and vertically antisymmetric about the mid-
level (Fig. la, top). This purely baroclinic basic state
with no potential vorticity gradient guarantees that the
vertically integrated eddy momentum flux of normal-
mode baroclinic instability vanishes identically (theo-
rem 3). Furthermore, the zonal mean flow will remain
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FIG. 1. The y-z profiles of three different basic states (top panels) and the corresponding eddy heat flux (middle panels) and momentum
flux (bottom panels) of the most unstable linear normal mode whose wavelength is 4000 km. The dimensions of the domain shown are
—~L/2<y<L/2and —H/2 < z < H/2. The flows are prescribed by (3.1) and (3.3) with (a) purely baroclinic jet (2 = 4 = 0), (b) a
weak, constant barotropic shear (4 = —1 X 1077 s7"), (c) a weak vertical asymmetry (4 = —H/20). In top panels, thick curves represent
U(y, z), contoured every 1 m s™! and negative values dashed, while thin dashed curves represent 6(y, z), every 3 K. In all cases, potential
vorticity of the basic state is uniform. In the middle and bottom panels, the poleward (pointing to the right) flux is plotted in solid contours

whereas the equatorward fluxes are dashed.

devoid of barotropic wind during the entire life cycle
by virtue of theorem 4, thereby a priori excluding the
influence of the nonlinear barotropic governor.

We set the values of parameters as

fo=1X10"*s"!, N3=g0,/6,=1X10"*s72,
A=1X103s"! g=98ms™2, 6, =290 K,

L=1X10"m, H=1X 10*m
(3.3)

The baroclinicity of the flow is weak with the maximum
wind speed of +5 m s~! appearing at the top and bot-
tom of the jet axis. The representative Richardson
number of the jet, N3/A?2, is 100, consistent with the
quasigeostrophic scaling.

The detailed stability analysis of the flow is beyond
our scope. Here, we simply integrate the linearized ver-
sion of the numerical model from an arbitrary initial
perturbation until an exponential mode emerges and
the growth rate converges. Because of the y symmetry
of the basic state, the shape of the normal mode can
be either symmetric or antisymmetric about y = 0
(theorem 1). By initializing the model with symmetric
and antisymmetric perturbations, we find that the
growth rates of the obtained symmetric modes are sub-
stantially larger than those of antisymmetric modes, in

accord with the previous results based on an analytic
model (Nakamura 1993). The growth rates of the
symmetric modes are plotted in Fig. 2 as a function of
wavelength (solid curve). Based on this curve, we
choose the wavelength of 4000 km as the scale for the
most unstable mode. Due to the vertical symmetry,
the unstable modes are stationary with the steering level
exactly at z = 0.

The heat and momentum fluxes associated with the
growing mode are plotted as functions of latitude and
height in the middle and bottom panels of Fig. la,
respectively. As required by corollary 1, the heat flux
is symmetric about both y = 0 and z = 0, whereas the
momentum flux is antisymmetric about the same
planes. While the heat flux is robustly positive (down-
gradient), the momentum flux integrates to zero ver-
tically. Due to the uniform basic-state potential vor-
ticity, the potential vorticity flux associated with the
mode is zero to within the truncation error of the
model. Thus, the only nonvanishing terms in (2.4) are
the identical heat fluxes at the two boundaries, just as
in the classic Eady problem.

This linear mode, with an amplitude of 0.5 K at (y,
z) = (0, £ H/2) in potential temperature, is used to
initialize the nonlinear model. The subsequent evo-
lution is shown at ¢t = 3, 5, and 7 in Fig. 3a in terms
of the horizontal distribution of the potential temper-
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FIG. 2. Growth rates of meridionally symmetric modes for the
purely baroclinic basic flow in the top panel of Fig. 1a, plotted as a
function of wavelength. Solid curve: fplane (uniform potential vor-
ticity). Dashed curve: beta plane with 8 = 1 X 10~ s~ m™! (uniform
potential vorticity gradient).

ature at the lower boundary, and in Fig. 3b in terms
of the vertical cross section of the zonal mean flow.
The evolution of eddy kinetic energy is shown in Fig.
4 (curve a).

The disturbance, seen in the displacement of the is-
entropes, is initially localized near the center of the
channel and amplifies exponentially ( = 3). Then it
gradually invades the outside quiescent regions (i
= 5). During this period, the meridional temperature
gradient in the zonal mean flow diminishes in the cen-
ter of the channel, while a pair of transitional baroclinic
zones appear at the flanks as the secondary temperature
gradients develop (Fig. 3b). Beyond the initial growth,
the eddy kinetic energy increases monotonically, but
not exponentially, by extracting additional available
potential energy stored in the outer regions. The dis-
turbance saturates the flow by the time it reaches the
boundaries (¢ = 7). By then the north-south temper-
ature contrast is reduced over the entire domain, and
the baroclinic conversion of available potential energy
comes to a halt. Throughout the integration, the zonal
mean wind preserves the vertical antisymmetry, con-
sistent with theorem 4. Hence, the barotropic wind in
the mean flow is always suppressed, preventing the ed-
dies from giving up kinetic energy barotropically. Al-
though generation of subharmonics is evident in the
wrapping of contours in Fig. 3a, it does not appear to
affect the nature of the large-scale equilibration process.

Further integration reveals that after equilibration
the eddy maintains an equivalent barotropic structure
and its kinetic energy decays only slowly through in-
ternal diffusion, while the zonal mean field approaches
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a gradient-free state. This is significantly different from
life cycles observed in some weakly supercritical flows
in two-layer models (Pedlosky 1970; Feldstein and
Held 1989) and in multilevel models with a severe me-
ridional truncation (Barnes 1986 ) where the eddy de-
cays baroclinically with reversed mean gradients after
the saturation. While it is undetermined whether this
is an unnatural effect of the rigid walls at y = +L or
due to the fundamental differences between the fully
nonlinear model and the models with constrained dy-
namics, that the meridional structure of the nonlinear
baroclinic wave in our case quickly diverges from that
of the linear normal mode suggests that the latter is
the case.

b. Effects of constant barotropic shear

The lack of barotropic shear in the above case is a
consequence of the vertical symmetry of the system, a
very special (and unrealistic) constraint. When we re-
lax this symmetry by introducing nonzero barotropic
shear in the basic flow, how does it affect the nonlinear
dynamics of the baroclinic waves? To address this issue,
we add a weak, constant barotropic shear 4 in (3.1),
while still keeping 4 = 0. This slightly breaks the sym-
metries of the basic flow, as illustrated in the top panel
of Fig. 1b for a cyclonic shear (4 = —1 X 1077 s7').
The structures of the heat and momentum fluxes of
the normal-mode instability are displayed in the lower
panels. Compared with the purely baroclinic case (Fig.
1a), the heat flux is only slightly modified with a mar-
ginal vertical tilt. The structure of the momentum flux,
however, is drastically different: its sign is predomi-
nantly negative with the amplitude maximum located
near the center of the baroclinic zone, where it would
vanish in the purely baroclinic problem. The momen-
tum flux no longer integrates to zero vertically and is
positively correlated with the barotropic shear of the
zonal wind; that is, it is countergradient. Consistent
with this momentum flux, the horizontal structure of
the perturbation streamfunction is characterized by a
coherent, downshear meridional tilt (not shown). Since
this negative momentum flux converges at the flanks
of the baroclinic zone, it tends to enhance the cyclonic
barotropic shear via (2.3). The direction of the mo-
mentum flux is in qualitative agreement with previous
studies (MclIntyre 1970; Held and Andrews 1983;
James 1987; Nakamura 1993).

The finite-amplitude evolution of this normal mode
in the full model, sequenced in Fig. 5, exhibits a striking
difference from the purely baroclinic problem. As the
wave grows baroclinically, its northwest to southeast
tilt increases (Fig. 5b, 1 = 4). The enhancement of the
tilt proceeds hand in hand with the production of
barotropic shear in the zonal mean flow, illustrated in
Fig. 5b, in sharp contrast with Fig. 3b where the baro-
tropic wind is completely absent. The rapid divergence
of the two solutions is due to the positive feedback
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FIG. 3. (a) Evolution of potential temperature on the lower
boundary (z = —H/2) in the nonlinear model, initialized with
the basic flow plus the linear normal mode shown in Fig. la. The
wavelength is 4000 km with two wavelengths shown, while the
meridional width of the domain is 10000 km (-L/2<y< L/
2). Contour interval is 1 K, with values smaller than the initial
median value dashed. Top panel: ¢t = 3, middle: ¢ = 5, bottom: ¢
= 7 after the beginning of integration, where ¢ has been normalized
by the e-folding time of the normal mode of Fig. 1a, or 106 hours.
(b) Evolution of the zonal mean flow at the corresponding time
to the frames in (a). Convention is the same as in the top panels
of Fig. | except the contour interval of the mean wind is 1.5
ms™t.
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FIG. 4. Evolution of domain-averaged eddy kinetic energy density.
In all runs, the most unstable linear modes are normalized to have
the same amount of eddy kinetic energy density initially. The basic
state corresponding to each curve is characterized by (a) purely baro-
clinic flow with uniform potential vorticity (Fig. 1a), (b) weak vertical
asymmetry in the flow (Fig. I¢), (¢) strong vertical asymmetry (A
=—H/2 in 3.1), (d) same as (a) but on the beta plane (8 = |
X 107" s™' m™!), (e) weak, constant barotropic shear (Fig. 1b), (f)
same as (a) but with the primitive equations. Time scale is normalized
by the e-folding time of the linear normal mode for (a), or 106 hours.

between the horizontal shear and the eddy momentum
flux, the key element in the nonlinear barotropic gov-
ernor, triggered by the weak asymmetry in the basic
flow. This positive feedback continues until the dis-
turbance is completely sheared out (¢ = 5). At this
time, eddy kinetic energy is lost to the mean flow
through Reynolds stress more than it is gained through
baroclinic conversion; thus, the eddy begins to decay
barotropically. Although the meridional temperature
gradient is significantly reduced over the domain, much
of the released available potential energy ends up in
the kinetic energy of the zonal mean flow. Conse-
quently, the eddy kinetic energy for this case, indicated
by the curve (e) in Fig. 4, peaks at a much smaller
value compared to the unsheared case, indicating that
the conversion of the available potential energy is
hampered by the nonlinear barotropic governor before
the mode has a chance to obtain all the available po-
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tential energy stored in the domain. The eddy kinetic
energy decays rapidly after saturation, and no signifi-
cant development of any secondary instability is found
during the integration period.

Although the simulation uses the fully nonlinear
model, interaction between the fundamental wave and
the mean flow appears to be primarily responsible for
the equilibration. To verify this, we have repeated the
calculation without the nonlinear Jacobian terms in
the eddy prognostic equations. In this simplified model,
wave—-wave interaction is eliminated and the only non-
linearity is that of wave-mean flow interaction. Since
only one zonal wavenumber is allowed, the details of
the eddy structure in this model are very different from
the full model. Nonetheless, the large-scale behavior,
particularly the zonal mean flow profile shown in Fig.
6, remains similar up to the point of wave equilibration.
Divergence of the two solutions becomes significant
only in the decay stage: enstrophy cascade and diffusion
in the full model seem to play significant roles.

When the sign of 4 changes in (3.1), the direction
of the momentum flux is reversed, too. This is because
the two solutions for opposite sign of 4 are mirror im-
ages of each other about the center of the channel y
= 0, so their meridional tilts are opposite. The nonlin-
ear barotropic governor still works the same way but
the flow will be dominated by an anticyclonic shear
near the center of the channel. This sensitivity to the
sign of initial asymmetry has been demonstrated also
by Davies et al. (1991) in the context of semigeo-
strophic frontogenesis.

c. Effects of a barotropic westerly jet

To further test the sensitivity of the eddy momentum
flux to the shape of the basic flow, we now perturb the
purely baroclinic problem with a weak, westerly baro-
tropic jet symmetric in y. This is achieved by intro-
ducing a negative # while keeping 4 zero in (3.1),
thereby breaking the vertical symmetry in the basic
flow. The top panel of Fig. 1c depicts the basic flow
profile with # = —H/20. The departure from Fig. 1a
is subtle, but when vertically integrated, the wind yields
a weak westerly jet as a barotropic component. Notice
that the meridional symmetry of the flow is preserved,
unlike the constant shear case, so the related symmetry
properties in the mode structure are also preserved
(theorem 1 and corollary 1). The corresponding heat
and momentum fluxes of the linear mode are shown
in the lower panels of Fig. 1¢. The modification in the
heat flux from the pure baroclinic problem (Fig. 1a)
is a slight asymmetry introduced in its vertical structure.
The momentum flux, in contrast, shows systematic
convergence: it is poleward on the equator side of the
Jjet and equatorward on the polar side. The magnitude
of the converging vertically integrated momentum flux
takes maximum values approximately where the baro-
tropic shear is strongest, and once again, the flux is
predominantly countergradient.
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FIG. 5. Same as Fig. 3 but for the basic state with a weak,
constant barotropic shear (Fig. 1b, top) at ¢ = 3, 4, and 5 from
top down. Other convention is identical with Fig. 3.
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FIG. 6. Same as Fig. 5b except in this case the model
excludes wave-wave interaction. See text.

The nonlinear solution initialized with the linear
mode develops distinct meridional tilts across the jet
axis, consistent with the directions of the momentum
flux (Fig. 7a, t = 5). Although the horizontal shear in
the zonal mean wind at the jet axis remains zero due
to the meridional symmetry, the momentum flux con-
vergence accelerates the flow barotropically near the
axis while it decelerates at the flanks, enhancing the
barotropic shear in between (Fig. 7b). The disturbance
is eventually sheared out on both sides of the jet axis.
As this occurs, the eddy kinetic energy levels off at a
much smaller value than in the purely baroclinic prob-
lem (Fig. 4, curve b). Unlike the constant barotropic
shear case, however, the disturbance starts to draw ad-
ditional available potential energy stored outside the
jet shortly after the first equilibration (¢ ~ 6), and the
level of eddy kinetic energy grows somewhat higher
than the initial peak, though still much less than the
values obtained in the purely baroclinic problem. De-
spite such differences in the details, the same mecha-
nism of the nonlinear barotropic governor as in the
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constant shear case is evidently working to limit the
growth of baroclinic eddies.

Notice that the solution with the opposite sign in /4
would be vertically antisymmetric about z = 0 with
this case. The barotropic jet would then be easterly;
but with the (westerly) momentum flux being diver-
gent, the strengthening of the jet would still occur in
the same fashion.

The qualitative features of our solution are found
rather insensitive to the change in the jet width, L: the
barotropic governor is also evident in experiments with
a wider jet, as long as there is a slight vertical asym-
metry. This is perhaps because L in (3.1) controls both
baroclinic and barotropic profiles of the jet, so the rel-
ative importance of the two is independent of the width.
If the barotropic part of the jet had a much broader
profile than the baroclinic component, the barotropic
governor might proceed more slowly.

In both of the above examples, we deliberately fo-
cused on the effects of weak asymmetry to test the sen-
sitivity of the purely baroclinic problem. By imposing
much larger asymmetry in the basic state, we have
found little qualitative change in the solution. Larger
barotropic shear, however, affects the stability char-
acteristics more; most notably, it reduces the growth
rates of the linear modes (James 1987), and also re-
duces the saturation amplitudes of the nonlinear waves.
For example, setting # = —H /2 in the westerly jet case
(which makes the surface wind zero) yields the evo-
lution of eddy kinetic energy represented by curve c of
Fig. 4.

4. Beta and sphericity effects

The wave-mean flow interaction discussed in the
previous section is independent of interior potential
vorticity dynamics. Since there is no potential vorticity
flux in the domain, (2.1) suggests that the planetary
vorticity flux by the residual circulation is solely re-
sponsible for the alteration of the mean flow. The net
effect of the residual circulation on the barotropic wind
is equal to the convergence of the vertically integrated
momentum flux as shown in (2.3). The momentum
flux convergence, in turn, is controlled by the vertical
asymmetry of the heat flux between the top and bottom
boundaries through (2.4). This asymmetry is solely
induced by the asymmetry in the basic flow, namely,
addition of barotropic shear to the purely baroclinic
basic state. The nonlinear solutions are quite sensitive
to the shape of the barotropic shear.

Just as the barotropic shear introduces asymmetry
in the governing equations, so does the potential vor-
ticity gradient (theorems 1 and 3). In this section, we
analyze the constraints that the gradient in the plane-
tary potential vorticity exerts on the direction of eddy
momentum flux of baroclinic instability and on the
initiation of the nonlinear barotropic governor. Within
the framework of quasigeostrophic dynamics, the low-
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est-order approximation to spherical geometry is the
beta plane, a constant gradient in the Coriolis param-
eter. To examine the effects of sphericity beyond the
beta-plane approximation, one generally needs to adopt
spherical coordinates. In doing so, one also has to take
the higher-order ageostrophic motion into account to
retain the model’s consistency, since the geometric and
the ageostrophic terms are of the same order in the
equations of motion when the meridional scale of the
motion is comparable to the scale of the planet. Thus,
the standard quasigeostrophic set needs to be modified
to higher-order balance equations (Shutts 1989; Mak
1991) in which it is difficult to separate the influences
of sphericity from those of higher-order ageostrophic
motion. In a relatively simple attempt to introduce
qualitative effects of the earth’s curvature, we consider
a surface on which beta decreases linearly with latitude
and retain a Cartesian coordinate. This approximate
surface was considered first by Yang (1987) in a non-
divergent barotropic model and termed the *‘delta sur-
face.” The delta surface approximation is expressed as

8
S=~f+By=35" (4.1)
where it is implied that
fo> BL, B> oL, (4.2)

with L being the meridional scale of the domain. No
formal justification will be given to this approximation.
In fact, this modified quasigeostrophic set is ad hoc in
the sense that it cannot be derived from a formal
asymptotic expansion in Rossby number (which would
lead only to the beta-plane approximation, e.g., Ped-
losky 1987). Moreover, the resolved sphericity effect
is partial, taking only the curvature in the planetary
vorticity into account and discarding other geometric
terms of the same order. The following discussion on
the sphericity effect should therefore be taken as qual-
itative.

To isolate the influence of sphericity from those of
barotropic wind shear, we choose the purely baroclinic
basic state, 4 = 4 = 0 in (3.1) along with the parameter
setting of (3.3). Although the flow itself does not con-
tribute to the meridional gradient in the potential vor-
ticity [ Eq. (3.2)], the y dependence of the Coriolis pa-
rameter makes the gradient nonzero,

a0

P B — oy.
Clearly, the delta term breaks the meridional symmetry
of the potential vorticity gradient, and thus breaks the
symmetry of the quasigeostrophic set (theorem 1). On
the other hand, beta breaks the vertical symmetry of
the system (theorem 3).

(4.3)

a. The beta effect
First we employ

B=1x10""s"m™, &=0, (4.4)
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as the standard choice of the beta plane and compare
the results with those of the f~-plane problem.

The changes in the linear stability characteristics are
notable in the reduction of growth rates at long wave-
lengths, the shift of the most unstable wavelength to
shorter scales, and the lack of shortwave cutoff as plot-
ted in a dashed curve in Fig. 2. The structures of heat,
momentum, and potential vorticity fluxes associated
with the unstable wave, now at the wavelength of 3200
km, are illustrated in Fig. 8a. Compared with Fig. la
for the f~-plane case, the differences in the heat and mo-
mentum fluxes are largely in their vertical asymmetry:
The maximum heat flux is found at the bottom of the
channel center, whereas the momentum flux is greatest
in the flanks of the jet at the top. This asymmetry is
introduced because the constant, nonzero potential
vorticity gradient violates the vertical antisymmetry
(theorem 3), though it does not affect the meridional
symmetry (theorem 1). Due to this vertical asymmetry,
the momentum flux, when vertically integrated, be-
comes convergent. The potential vorticity flux is lo-
calized in the low levels with the maximum appearing
near the steering level (z =~ —H/5), and its direction
is predominantly negative (downgradient). The three
fluxes are related through (2.2a).

The sequence of the life cycle based on this normal
mode is displayed in Fig. 9. As the wave attains finite
amplitude, the low-level mean flow is markedly accel-
erated near the center of the channel, forming a distinct
westerly barotropic jet in the zonal wind (Fig. 9b, ¢
=3, 4). As the jet strengthens, the wave becomes
markedly tilted in the horizontal and eventually
sheared out on both sides of the axis (Fig. 9a, ¢t = 4,
5). However, the disturbance shows secondary growth
by extracting more available potential energy from the
outer regions (¢ = 5). The flow evolution is qualitatively
similar to the fplane case with a westerly jet, but the
meridional extent of the disturbance and the generated
westerly jet is narrower (compared with Fig. 7), prob-
ably due to the smaller zonal scale of the eddy (3200
vs 4000 km). The smallness of the obtained eddy ki-
netic energy (Fig. 4, curve d) is partly due to the shal-
lower vertical structure of the eddy, but the nonlinear
barotropic governor is still responsible for the early ter-
mination of the energy growth.

An interesting aspect of the mean flow modification
is that the acceleration of the low-level jet is inconsistent
with the negative potential vorticity flux in (2.1).
Clearly, the residual circulation competes with and
overcomes the potential vorticity flux so as to accelerate
the flow. The mean flow tendency is in better corre-
lation with the largely converging eddy momentum
flux. That the potential vorticity flux (or Eliassen-Palm
flux convergence) is not necessarily a good measure of
mean-flow acceleration in the troposphere has also been
pointed out by Pfeffer (1987) from observational data.
Thus, despite the addition of a potential vorticity gra-
dient, the positive feedback between the momentum
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F1G. 8. Heat flux (top), momentum flux (middle), and potential vorticity flux (bottom) of the most unstable linear mode (wavelength
= 3200 km). (a) Beta-plane approximation. (b) Delta-surface approximation. The basic flow profile is identical to Fig. 1a (top). Equatorward

(negative) fluxes are dashed.

flux and horizontal shear still seems primarily respon-
sible for the rapid modification of the mean flow. Me-
ridional radiation of Rossby waves in the upper tro-
posphere and their breaking at the flanks would further
sharpen the jet in the later stage of the life cycle, but
the critical latitudes where the wave breaking occurs
are likely to be determined by the preceding formation
of a barotropic jet. This suggests that the primary effect
of planetary potential vorticity gradient on the equil-
ibration of baroclinic instability is to form converging
eddy momentum flux, a path to the nonlinear baro-
tropic governor, rather than to alter the mean flow di-
rectly via the eddy potential vorticity flux.

b. The sphericity effect

Now we add a small, constant gradient in beta as a
crude approximation to spherical geometry. We choose

6§=2X 10785 m2,
(4.6)

The same, purely baroclinic flow profile of Fig. 1a is
used for the basic state. The structures of heat, mo-
mentum, and potential vorticity fluxes associated with
the linear normal modes are shown in Fig. 8b. The
meridional asymmetry introduced by the delta effect
is again most pronounced in the eddy momentum flux
whose direction is now significantly biased towards the
pole: the equatorward momentum flux on the polar
side of the jet is almost gone. The maxima in the heat
and potential vorticity fluxes shift somewhat equator-
ward from the channel center.

Figure 10 describes the life cycle of this mode and
associated mean flow modification. Most notably, the
horizontal structure of the mode is characterized by a
northeast to southwest tilt, consistent with the direction

B=1X10""sm?,
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of the momentum flux. The tilt amplifies rapidly until
the disturbance is eventually sheared out (¢ = 4, 5).
Due to the asymmetric momentum flux convergence,
the axis of the westerly jet shifts toward the pole from
the channel center, and the region of decelerated flow
on the equator side expands (Fig. 10b). The added
asymmetry, however, does not subvert the overall ten-
dency of forming a pronounced westerly jet as long as
the delta term in (4.3) is an order Rossby number cor-
rection to the beta-plane approximation. Further ex-
amination of the O(1) change in the potential vorticity
gradient, as well as of other geometric effects, should
be done with the aid of models based on spherical co-
ordinates. It is worth mention that despite the ad hoc
approximation, the features displayed in Fig. 10 are
remarkably similar to those found in some primitive
equation life-cycle simulations performed on the
sphere.

5. Influence of ageostrophic circulation

Since the influence of the higher-order ageostrophic
circulation is of the same order as that of the earth’s
sphericity in the equations of motion when the merid-
ional scale of the motion is comparable to the earth’s
radius (Mak 1991), it is difficult to decouple one pro-
cess from the other if the model is based on a spherical
coordinate. To isolate the effect of ageostrophic motion,
we analyze solutions of the primitive equations on an
fplane in this section and compare them with the so-
lutions of the quasigeostrophic equations described in
section 3. To make this comparison as clean as possible,
the model is discretized in the same channel geometry
and resolution, and the flow parameters used in the
quasigeostrophic model of section 2 are retained. In
the full model, second-order horizontal diffusion terms
are added to the three prognostic equations. The dif-
fusion coefficients are assumed constant and equal to
the one used in the quasigeostrophic model. Notice
that none of the symmetry properties of the quasigeo-
strophic set discussed in section 2 apply to the primitive
equations. For example, the momentum equations
are not invariant under the coordinate translation
(y, v) = (—y, —v). Therefore, the mode structure is
expected to be asymmetric to some degree even when
the basic state is symmetric, unlike the quasigeostrophic
solutions.

The inviscid, linearized version of the numerical
model is integrated to generate a growing mode on a
purely baroclinic basic flow, expressed by (3.1) with 4
= h = 0. The Ertel potential vorticity associated with
this flow is not uniform, unlike the quasigeostrophic
potential vorticity. However, the inhomogeneity is suf-
ficiently weak that the large-scale dynamics is still con-
trolled mainly by the potential temperature gradients
at the boundaries. Alternatively, one could make the
potential vorticity uniform by transforming the flow
profile (3.1) defined in the semigeostrophic coordinate
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to the physical space. The resultant flow, however, is
slightly asymmetric due to the asymmetry in the co-
ordinate transform. We have tested both cases and
found little qualitative difference. The symmetric basic
flow will be used in the following illustration.

With the large Richardson number of the flow, the
change in the growth rate spectrum from the quasi-
geostrophic solution is hardly appreciable. The heat
and momentum fluxes associated with the linear nor-
mal mode are plotted in Fig. 11a. Compared with the
quasigeostrophic mode for the same basic flow in Fig.
1a, the heat flux exhibits similar structure except for a
slight vertical tilt. The momentum flux, however, is
very different in that its sign is predominantly negative
(equatorward ), and the maximum value appears near
the center of the channel on both boundaries. These
differences are evidently caused by nonquasigeo-
strophic effects, and are similar to the findings by Gall
(1977). Such intrinsic asymmetries in the governing
equations are characteristic of nonquasigeostrophic
models in general. For comparison, the linearized ver-
sions of semigeostrophic equations (Hoskins 1975) and
hypogeostrophic equations (Snyder et al. 1991) are
used to compute the eddy fluxes of the same normal
mode, displayed in Figs. 11b and 11c. A detailed ex-
amination of the asymmetries in these equations is
found in appendix B.

The finite-amplitude evolution of this mode in the
full model, delineated in Fig. 12, is contrasted with the
quasigeostrophic solution for the same basic flow in
Fig. 3. Unlike the quasigeostrophic solution, the equa-
torward eddy momentum flux and its convergence give
rise to a westerly jet in the mean flow to the south of
the channel center and an easterly jet to the north. As
a result, a vertically coherent cyclonic shear is created
near the center of the channel. This shear in turn rein-
forces eddy momentum flux during the growth of the
disturbance, leading to a rapid increase in the barotro-
pic shear. By ¢ = 5 the large horizontal gradients in the
mean flow completely disintegrate the mode structure,
leaving a pair of counterpropagating eddies embedded
in the westerly and easterly jets. The peak value of the
eddy kinetic energy is only 34 percent of that in the
corresponding quasigeostrophic problem (Fig. 4, curve
f), and the energy decays rapidly after the saturation.

In view of the small Rossby number of the initial
flow, the rapid divergence of the solution of the prim-
itive equations from that of the quasigeostrophic equa-
tions may seem surprising. Yet, it should be remem-
bered that the quasigeostrophic solution with this sym-
metric basic state on the fplane is a very special case
and is very sensitive to even weak asymmetry in the
basic flow. The intrinsic asymmetry in the primitive
equations appears to play essentially the same role as
the weak basic-flow asymmetry in the quasigeostrophic
solutions. Indeed, features in Fig. 12 are remarkably
similar to those of the quasigeostrophic case with cy-
clonic barotropic shear in the basic flow (Fig. 5), where
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FIG. 11. Heat flux (top) and momentum flux (bottom) associated with the most unstable linear mode predicted by higher-order models
for the same basic state as in Fig. 1a. (a) Primitive equations, (b) semigeostrophic equations, (c) hypogeostrophic equations. For (b) and
(¢), the fluxes are shown in the physical space. Convention follows that of the middle and bottom panels of Fig. 1. See text and appendix

B for explanation.

a pair of easterly and westerly jets develops in the mean
flow. It suggests that the primitive equations have an
intrinsic bias toward producing cyclonic shear in the
mean flow. Similar observation has been made by Sny-
der et al. (1991) in the context of three-dimensional
frontogenesis.

The difference between the quasigeostrophic and
primitive equation solutions diminishes when they are
compared using a basic state with sufficient asymmetry,
due to barotropic shear or beta. It is found that, al-
though the solutions of the primitive equations still
show a systematic bias toward cyclonic shear in the
mean flow, the asymmetry in the basic state largely
controls the qualitative nature of both solutions and
they become less distinguishable even after a long in-
tegration. In such instances, the Rossby number (or
the Richardson number) of the flow appears to be a
good measure of the closeness of the two solutions.

As the horizontal shear distorts the mode, it generates
small-scale structures, particularly in the meridional
dimension. This indicates that the meridional resolu-
tion of the model is important for the accurate repre-
sentation of the flow in the latter stage of a life cycle.
Therefore, we have repeated our calculation with twice
the meridional resolution and reduced horizontal dif-
fusion. The difference is barely visible until the mode
is severely distorted by the horizontal shear. It is only
well into the decay stage that the details of the solutions
begin to disagree.

6. Discussion

Using a number of idealized linear and nonlinear
integrations, we have examined the nature and role of
eddy momentum flux in the dynamics of baroclinic
instability. The vertically integrated momentum flux
is found to impose a profound effect on the wave dy-
namics through the barotropic shear it spins up in the

zonal mean flow. The shear and countergradient mo-
mentum flux reinforce each other, leading to a rapid
intensification of the barotropic shear in the flow. As
this occurs, the mode becomes distorted and eventually
loses meridional integrity. It is this rapid structural
change in the mode, rather than the shortage of the
available potential energy in the flow, that is primarily
responsible for the cessation of growth in the eddy en-
ergy, though additional available potential energy may
be tapped later in secondary instabilities at the flanks
of the jet. The decay of the eddies is predominantly
barotropic: the eddy kinetic energy is drawn to the
mean flow, consistent with previous life-cycle experi-
ments on the sphere (e.g., Simmons and Hoskins
1978). In the decay stage, the horizontal shear in the
mean flow promotes enstrophy cascade; thus, even a
weak horizontal diffusion can easily achieve an irre-
versible mixing of potential temperature and potential
vorticity.

In the quasigeostrophic, purely baroclinic problem
on the f plane the vertically integrated momentum
flux associated with the baroclinic waves is found to
vanish due to the imposed antisymmetry. In that case
the eddy spins up no barotropic shear in the flow and
grows, utilizing all the available potential energy in the
domain. Even a slight asymmetry added to the basic
state or the use of the primitive equations, however,
effectively gives rise to barotropic momentum flux and
runaway production of large barotropic wind in the
zonal mean flow follows. Given the spatial asymmetry
that abounds in the atmosphere, the purely baroclinic
problem is unlikely to represent any realistic flow re-
gimes. The amount of energy retained by the eddy at
the time of equilibration would depend more on how
fast the horizontal shear is spun up than on the total
amount of available potential energy initially stored in
the domain. This view certainly deviates from those of
the traditional theories of baroclinic adjustment (Stone
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1978) and weakly nonlinear dynamics (Pedlosky
1971), which exclude the effects of horizontal shear.
Homogenization of potential vorticity and enhance-
ment of static stability, though still significant for the
equilibration, are likely to compete with the barotropic
governor in their effectiveness. Since changes in the
meridional structure of the mode are the essence of
the nonlinear barotropic governor, any models with
severe meridional truncation would be unable to cap-
ture its full effect.

Although ultimately the coupling between the eddy
momentum flux and horizontal shear dominates the
nonlinear dynamics, barotropic shear is not the only
way to form eddy momentum flux. As there are many
ways to introduce asymmetries in the governing equa-
tions, the shape of the vertically integrated eddy mo-
mentum flux for the normal mode is a function of
many factors. Table 1 summarizes the effects of the
factors controlling the eddy momentum flux and the
nondimensional measure of their effectiveness. Al-
though in principle it is possible that the competition
among these processes may lead to a fortuitous can-
cellation—for example, the ageostrophic effect and an-
ticyclonic shear in the basic state give offsetting ten-
dencies—in the formation of momentum flux, in real-
ity it would be unlikely that the baroclinic eddy is
completely devoid of momentum flux and of its con-
sequences.

In addition to the factors listed in Table 1, lack of a
“lid” and compressibility may be considered as im-
portant vertical asymmetries in the real atmosphere.
Their effects should be qualitatively similar to those of
the beta effect: the compressibility enhances the back-
ground potential vorticity gradient and the mode
structure will be trapped near the surface.

The sensitivity of eddy momentum flux is greatest
when the basic flow is nearly symmetric. To demon-
strate this, consider a meridionally symmetric basic
flow with symmetric potential vorticity gradient. The
eddy momentum flux of the quasigeostrophic normal
mode for this basic state, [#yvo], is meridionally an-

TABLE 1. Summary of factors affecting the vertically integrated
eddy momentum flux in normal-mode baroclinic instability.

Direction of
momentum
flux in the
region of
Factor energy release Measure
Barotropic shear in the
basic flow countergradient  (UyLE)/(U.H)
Planetary potential vorticity
gradient (8) converging (N3BH)/(f3U:)
Negative gradient in 3 (6) poleward SLC/B
Ageostrophic wind equatorward U./Ny

U®: barotropic part of the zonal wind, L¢: meridional width of
baroclinic zone.
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tisymmetric as shown by corollary 1. Now we perturb
the system slightly either by adding a weak, constant
barotropic shear in the basic flow or by considering
the primitive equations. The eddy momentum flux is
modified to

[uv] = [uovo] + [ty00] + [uov;]

+ higher order terms. (6.1)

In either case, it is easy to show that the correction in
the velocity denoted by the subscript 1 has the opposite
symmetry to the corresponding geostrophic value as
long as the correction is small. For example, v, is me-
ridionally antisymmetric about y = 0. As a result, the
second and third terms on the rhs of (6.1) are merid-
ionally symmetric. In particular, the second term [#,v,]
is nonzero at y = 0, thus it dominates over the leading-
order flux [uyvy], which vanishes there due to anti-
symmetry. The eddy momentum fluxes near the axis
in Fig. 1b and Fig. 11 are largely a signal from this
correction term. The correction to the heat and poten-
tial vorticity fluxes is hardly appreciable because it is
antisymmetric and thus largely masked by the sym-
metric geostrophic fluxes. In view of the dependence
of the nonlinear solution on the structure of the eddy
momentum flux, the above serves as a caveat against
the use of a symmetric basic state for the baroclinic
instability problem with the quasigeostrophic set. It also
seems to explain the rather surprising sensitivity of the
nonlinear response of baroclinic instability to a modest
change in the basic state, documented, but not system-
atically analyzed, by several authors (Hoskins and West
1979; Polavarapu and Peltier 1990; Davies et al. 1991).

The earth’s spherical geometry, represented crudely
by the beta effect, organizes the westerly momentum
into the region of energy release. Although the sharp-
ening of the jet is often associated with meridional ra-
diation and absorption of Rossby waves in the upper
troposphere during the decaying stage of the life cycle
(Edmon et al. 1980; Held and Hoskins 1985), our re-
sults indicate that the same tendency holds during the
modal growth as well due to the converging eddy mo-
mentum flux. This modal spinup of the jet is in fact
the precursor to the equilibration and barotropic decay
through the mechanism of a barotropic governor. The
primary role of the potential vorticity gradient in the
growing stage of the life cycle is to reinforce the baro-
tropic governor by forming a converging momentum
flux by the normal mode.

Questions remain as to the effectiveness of the non-
linear barotropic governor with additional complexity
in the dynamics, such as surface friction and the re-
laxation of zonal periodicity. The surface friction is
thought to diminish the zonal mean flow acceleration,
thereby undermining the enhancement of barotropic
shear. Indeed, James and Gray (1986) find that the
eddy activity in the statistical steady state is greater
when surface friction is included. The recent results of
Barnes and Young (1992), however, show evidence of
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a barotropic governor in a multiple life-cycle experi-
ment even when surface friction is present. Cehelsky
and Tung (1991) note that the barotropic governor
seems alleviated when longer zonal modes are included.
In another example, Chang and Orlanski (1993) argue
that the decay of zonally localized baroclinic eddies is
characterized by the downstream dispersion of eddy
kinetic energy in the form of a wave packet, rather
than by the alteration of the (locally defined) mean
flow. Yet Lee (1991 ) demonstrates in a somewhat sim-
pler context of a two-layer calculation that the local
mean flow can be modified significantly within a
packet. To what extent the coupling of the eddy mo-
mentum flux and the horizontal shear in. the mean
flow plays a role in the presence of these additional
factors appears to be worth further examination.
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APPENDIX A
Proof of Theorems 3 and 4

To prove theorem 3 (section 2), we form zonally
averaged potential enstrophy and potential energy
equations in the interior and on the boundaries, re-
spectively:

[q"%/2] + [¢;q’]Q_y =0, —H/2<z<H/2 (A.1)
[v:2/2), — [Ysv¥:lU. =0, z=+H/2, (A2)
where

q' = Vi + Vs + (SE/ NG (A.3)

All terms in (A.1)-(A.3) are invariant under the co-
ordinate translation z = —z. Constant ( or symmetric)
static stability and incompressibility in (A.3) are crucial
assumptions here. Thus, for a normal mode (whose
shape does not change with time) the flux terms bear
a particular symmetry about z = 0 as long as U and
0, do not introduce asymmetry. In particular, for an
antisymmetric flow profile of theorem 3, [ g'] is ver-
tically antisymmetric while [y ] is symmetric. By
virtue of (2.2a), momentum flux must be vertically
antisymmetric. This completes the proof of theorem
3. Notice, though, that the theorem is not useful for
neutral modes for which all terms in (A.1) and (A.2)
vanish.
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The nonlinear counterparts of (A.1) and (A.2) for
the eddy enstrophy and potential energy are

[q/2): + [¥:q'lla), + [¥k(q?/2)], = O,

—H/2<z<H/2 (A4)
[W2/2] + [Wevilly:], + ¥ (¥ /2)], = 0,
z=+H/2, (A.5)
where the zonal mean quantities follow
[l + [¥%d'l,=0, —H/2<z<H/2 (AS6)
[¥:] + [¥5¥:], =0, z==xH/2. (A7)

Again, every term in (A.4)-(A.7) is invariant with re-
spect to the translation z — —z. Therefore, if the system
is vertically symmetric about z = 0 at one point of
time, it remains symmetric for all time. For example,
if the flow is initialized with the vertically antisym-
metric basic flow plus the normal mode discussed
above, (A.6) and (A.7) assure that the antisymmetry
of zonal mean potential vorticity and the symmetry of
zonal mean potential temperature are preserved at the
next moment. In turn, symmetry in (A.4) and (A.5)
guarantees that the symmetry and antisymmetry of
eddy fluxes are preserved. Hence, vertical symmetry is
preserved both in the eddy fluxes and in the zonal mean
state, as stated in theorem 4. Inclusion of second-order
diffusion with constant eddy diffusivity does not affect
the symmetry of the system.

APPENDIX B

Asymmetries in the Semigeostrophic and
Hypogeostrophic Equations

After Hoskins ( 1975), the semigeostrophic equations
for the incompressible, uniform potential vorticity flow
bounded by two horizontal planes at the top and bot-
tom are

1 1
F (Pxx + Pyy) — F (Pxx®yy — ®%y)

)
+ L% d,,=1, —H/2<Z<H/2 (B.l)
gqGm
‘I)ZT + ‘PX@ZY - @y‘bzx = 0, Z = iH/Z, (B.2)
where
(Xs Y: Za T)E(x+vg/.f;y_ug/.f’ Zs t)7 (B'3)

f@ = d) + (ug' + U;)/z, (ug9 vg) = (_(I)Y: q’X):
(B.4)

¢ and ggm are the streamfunction and potential vor-
ticity of the corresponding geostrophic momentum
equations in physical space. The Coriolis parameter is
assumed constant. After redefining ® as the total value
minus the reference state ®(Z ), which satisfies
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0 - 6,N?
[ 5, -1, am=L" (B3
89m g
(B.1) becomes
1 . f?
(Pxx + Pyy) _7 (PxxPyy — P%y) + N ¢, = 0.
(B.6)

Equations (B.6) and (B.2) defined in the geostrophic
space (X, Y, Z) are identical with the quasigeostrophic
set in the physical space for the corresponding problem,
except for the underlined nonlinear term in (B.6). This
term is formally of the order of Rossby number com-
pared to other terms, and therefore routinely ignored
in the numerical solution in favor of the resultant sim-
plification (e.g., Hoskins and West 1979; Davies et al.
1991). Yet this term is important in introducing
asymmetry to the system: with this term included, the
symmetry theorems of the quasigeostrophic system in
section 2 fail to apply to the semigeostrophic system
in the geostrophic coordinate. Solving the full semi-
geostrophic equations, Snyder et al. (1991) find that
even for symmetric initial conditions deepening of lows
occurs faster than buildup of highs in the nonlinear
growth of three-dimensional baroclinic waves, with
markedly “bent-back” warm sectors. These are the
features missing in the simulation based on the trun-
cated semigeostrophic set that would yield, for example,
the same intensity in lows and highs.

One should not confuse this asymmetry with the
asymmetry associated with the coordinate transform
(B.3): even without this asymmetric term, the system
successfully predicts the tightening of the warm sector
and the positive vorticity near the ground in physical
space (Hoskins and West 1979). Yet without this term,
the asymmetric development of lows and highs, as well
as the distinct meridional tilt, will be a priori excluded
if a meridionally symmetric basic flow is chosen. The
better success of semigeostrophic theory in two-di-
mensional (X-Z) problems may be due to the lack of
this nonlinear term in the 2D formulation.

Upon linearization about a zonally uniform basic
state, (B.6) becomes

77 2
(1 +%) x + CI”)fy'f‘%QIZZ: 0. (B.7)
The second term in the bracket, arising from the un-
derlined term in (B.6), brings about asymmetry in the
linear problem in both meridional and vertical direc-
tions. We compute the normal mode based on this
equation and the linearized boundary conditions for
the purely baroclinic flow represented by (3.1) with A
= A = 0 (which satisfies B.5) but in the geostrophic
space (Y, Z). The heat and momentum fluxes of the
mode are shown in Fig. 11b in the physical space. The
meridional distortion introduced by the coordinate
transform Y = y — U/ fis at most 50 km, thus negligible
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compared with the meridional scale of the domain or
10 000 km. Compared with Fig. la for the quasigeo-
strophic mode (which is also the mode for the truncated
semigeostrophic set), the heat flux is only marginally
modified. Momentum flux, on the other hand, shows
a bias toward negative values in the region of energy
release due to the aforementioned asymmetric term,
but there is still a considerable difference from the so-
lution of the primitive equations shown in Fig. 11a.

Noting the inconsistency of the geostrophic mo-
mentum approximation in the expansion based on the
Eulerian Rossby number, Snyder et al. (1991) attempt
to improve the accuracy of the semigeostrophic set at
the expense of exact conservation laws. Their model,
termed the hypogeostrophic equations, takes an iden-
tical form in the geostrophic space with that of the
semigeostrophic model except that the coefficient of
the asymmetric term in (B.6) and (B.7) is four times
larger. Here we repeat the normal-mode calculation
utilizing the linearized hypogeostrophic equations. The
mode structure, shown in Fig. 11c, is now much closer
to the solution of the primitive equations: most notably
the predominantly negative values of the eddy mo-
mentum flux are correctly predicted. Although Snyder
et al. (1991) fail to integrate the nonlinear hypogeo-
strophic model for an extended period due to the hy-
perbolicity the asymmetric term induces, the accuracy
of the solution is remarkable up to the point of nu-
merical collapse. This suggests that the eddy momen-
tum flux of the normal mode for the purely baroclinic
problem can be used as a measure of the accuracy of
intermediate models.
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